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Direct expectation value calculations 
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Received 12 June 1984, in final form 3 September 1984 

Abstract. A new application of the Hellmann-Feynman theorem is shown to allow accurate 
calculation of expectation values along with energies for the Schrodinger equation, for 
variable boundary position and boundary conditions. Power series and finite difference 
versions of the method are developed and applied to perturbed oscillator and perturbed 
hydrogen atom problems. 

1. Introduction 

Several techniques are available for calculating the eigenvalues of the one-particle 
Schrodinger equation. For the one-dimensional (or radial) equation there are available 
power series methods and finite difference methods which give highly accurate energy 
values (Killingbeck 1983). These methods are very simple and avoid some of the 
calculation which is required by the matrix-variational approach. They obtain an 
energy eigenvalue E, without producing the normalised eigenfunction ll,,. To find a 
quantity such as (ll,,lf/ll,,) they proceed by noting that a small term ~f added to the 
potential would give an energy shift ~(ll,,Ifll l,,). This reduces the problem to one 
involving only accurate energy differences (Killingbeck 1979). In a matrix-variational 
approach, the eigencolumn associated with E, could be obtained, but the matrix 
elements o f f  for the basis set would be needed in order to find (f). The main 
disadvantage of the energy differencing approach is the necessity of performirig several 
energy calculations to find one expectation value. The present work obtains expectation 
values directly using power series or finite difference methods, and leads to a speedy 
and accurate technique well suited to microcomputer calculations. 

To make clear the principles involved, much of the discussion will be centred on 
the perturbed oscillator Schrodinger equation 

- D211, + px211, + AxZM$ = Ell, 

since comparative results using other techniques are plentiful in the literature (e.g. 
Simon 1970, Tipping 1976, Banerjee 1978). Section 2 explains the simple mathematics 
which forms the basis of the new method. Section 3 sets out the power series version 
of the method, with illustrative results, and points out its flexibility in handling problems 
with various boundary conditions. Section 4 applies the method to an effective potential 
approximation for the Zeeman effect. Section 5 sets out the finite difference version 
of the method, and shows how it can calculate unusual expectation values such as 
(x'( 1 + xz)- ' )  or the ll,' value at a specified point. There are several comments about 
the best way to implement the calculations, and § 6 discusses some points in detail. 
The computer language notation A( N )  (rather than A N )  is used in recurrence relations. 
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2. Basic principles 

The energy E ,  of each eigenfunction $, will vary with ,U and A. The Hellmann-Feynman 
identity 

( 9, l x’l 9, ) = a En I a~ (2) 

will hold for the bound states of the Schrodinger equation (1). By calculating each 
energy E, for a sequence of p values such as p * A ,  p f 2A,  with A small, a good 
estimate of a€,,/+ and so of (x’) can be obtained. This is the basis of Killingbeck’s 
earlier (1979) approach. However, it is possible to proceed further by noting that a 
variety of techniques (e.g. the Hill determinant method, the power series method, the 
finite difference method) locate an  energy eigenvalue by finding a zero of some 
appropriate function of E. (For  the methods of this paper the function used is actually 
the wavefunction at  some specified boundary.) The eigenvalue condition can thus 
be written in the form 

(3) 

for the case of the Schrodinger equation ( 1 ) .  From the chain rule of partial differential 
calculus we obtain the result 

F (  E, P, A 1 = 0 

(x’)= ( d E / a p ) A  = - (aF /dp) , / (aF /dE) , .  (4) 

This is the key equation which leads to the methods of this paper. ( x Z M )  will follow 
from an analogous equation which uses aF/dA instead of aF/ap..  Strictly speaking, 
a F / a p  should be worked out with E held at an  energy eigenvalue, but it suffices to 
use the current energy estimate in the convergent iterative procedures developed in 
this work. 

3. The power series method 

For the case of the Schrodinger equation (1) we write the wavefunction in the form 

( 5 )  $ = exp( - ipx’ )  1 A( N ) x ~ ~ + ‘  

where P is the parity index (0 for even, 1 for odd).  Substituting (5) into ( 1 )  leads to 
a recurrence relation for the coefficients: 

uA( N + 1 )  = bA( N) + CA( N - 1) +AA( N - M )  ( 6 )  
where 

U = ( 2 N +  P +  1)(2N+ P + 2 )  

C = /A - p2. 

b = ( 4 N + 2 P +  1 ) -  E 

Differentiating (6) with respect to E quickly shows that to obtain a$/aE we should 
use (5) with the coefficients A ( N )  replaced by new coefficients B ( N )  which obey the 
recurrence relation 

u B ( N +  1) = bB( N ) +  c B ( N -  1 ) +  A B ( N -  M )  - A ( N ) .  (10) 
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Similarly, d + / a p  is obtained by using in ( 5 )  the coefficients C ( N ) ,  for which 

a C ( N +  1) = bC( N ) +  cC( N - 1 ) +  A C ( N -  M ) + A ( N -  1). (1 1) 

The three recurrence relations (6), ( I O )  and ( 1 1 )  all use the same numerical coefficients 
a, b and c, which leads to a compact computation. The initial conditions are that all 
A, B and C coefficients are zero for N < 0, with A(0) = 1, B(0)  = 0 and C ( 0 )  = 0. If 
the boundary condition to be used is the Dirichlet condition +( L )  = 0, then the sums 
of the series for + ( L ) ,  d+(L) /aE  and J+(L)/ap are computed along with the 
coefficients. Strictly speaking, of course, the series actually represent exp($L2)$( L ) ,  
etc, but by working only with the ratios of series we can ignore the exponential factor: 
its main role is to provide an adjustable convergence parameter p. Starting from a 
trial energy E, we calculate a corrected energy E I using the Newton’s method formula 

E l =  E - + ( L ) / ( a $ ( L ) / a E ) .  (12) 

A value for (x’ )  emerges at the same time by using equation (4). To calculate (x”)  
for 2Q # 2 it is only necessary to use A( N - Q )  instead of A( N - 1) as the last term 
in equation ( 1  1).  (This corresponds to adding a ‘dummy’ term EX’O to the potential.) 
It should also be clear how to include extra terms in the equations when the potential 
is a polynomial involving several terms; our  AX'^ term is a representative general term. 

I t  is best to compute E I from (12) and ( x ’ )  from (4) by using ratios of the relevant 
partial sums at each N, rather than waiting until each separate partial sum has 
converged. Experience shows that this procedure of using the ratios of partial sums 
cuts computing time by roughly an order of magnitude, while empirical adjustment 
of the p value speeds up convergence even further. A single ‘run’ ends when E ’  as 
computed by (12) reaches a stable value, which is used to start the next run. After a 
few runs the computed (x’ )  and E values reach their final limits. In practice the whole 
calculation can be packed into a short microcomputer program (Killingbeck 1984b) 
which can handle a variety of circumstances. The operator inputs a trial E ; the nearest 
eigenvalue and the associated (x’ )  value (or selected ( x ” )  value) are computed directly 
in about a minute, if the eigenvalues are well separated. An attenuator subroutine 
(Killingbeck 1984a) will prevent jumping to other eigenvalues. The value of A(0) can 
be adjusted to avoid overflow or underflow. Alternatively, the quantities T (  N )  = 
A( N ) L N  can be used as the subjects of the recurrence relation, with a corresponding 
slight modification of the relevant equations ; this procedure is probably the best 
computationally. 

The calculation as described above allows the investigation of the way in which 
energies and expectation values vary with the position of the boundaries at x = * L 
(for this symmetric potential). By differentiating equation ( 5 )  with respect to x it is 
easy to see that to treat homogeneous Neumann boundary conditions at x = * L  it is 
only necessary to modify the series sums a little. In the summations each coefficient 
A( N )  or B(  N )  or C (  N )  is multiplied by a factor (2NL-I - p ) .  As L is increased, the 
effect of the L-’ term diminishes, so that for L+ CO the results become asymptotically 
the same for homogeneous Dirichlet or Neumann conditions. In the case of 
homogeneous Dirichlet conditions with L + CO the method takes an extremely simple 
form. Equation (6) then becomes isomorphic to the recurrence relation which would 
arise in a Hill determinant approach to the problem (Banerjee 1978), with A ( N )  
interpreted as the value of the determinant of an N x N  truncation of the Hill 
determinant. The requirement that the determinant shall be zero is then implemented 
in the present power series approach by using (instead of the partial sums) only the 
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current A ( N ) ,  B ( N )  and C ( N )  coefficients when forming the various ratios. It is 
thus possible to work out the results for L = CO within the course of a calculation for 
some finite L, so exhibiting directly the effect of moving the boundaries inwards. 

Table 1 gives a few illustrative results for the perturbed oscillator Schrodinger 
equation ( 1 )  for the case M = 2. The results were checked by noting that the indepen- 
dently calculated values of E, (x') and (x4) obeyed the virial theorem 

E =2p(x2)+3h(x4). (13) 

Table 1. Some results for the potential pxZ+Ax4, for both even and odd parity ground 
states. The parameter values L = 6, p = 2 were used throughout. 

( A A )  E (X2) (x4) 

1,o 1 .o 0.5 0.75 
0, 1 1.060 362 09 0.362 022 65 0.353 454 03 
1, 1 1.392351 64 0.305 813 65 0.260 241 45 
1,o 3.0 1.5 3.15 
0, 1 3.199 613 03 0.901 605 90 1.266 5577 
1, 1 4.648 8 12 70 0.801 250 60 I .Ol5 4372 

4. Perturbed Coulomb problems 

Once the basic principles of the method of § 3 have been understood it is possible to 
apply them to other problems. The most obvious next step is to look at radial problems, 
where we cannot use the even parity of the potential since the coordinate range is 
from r = 0 to r = R. For the case of the perturbed hydrogenic Schrodinger equation 
(in atomic units) 

- f ~ * + - ~ r - ' + +  V ( n ) r " + =  E+ (14) 
with positive integer n, we can first derive the traditional radial equation for states of 
angular momentum 1 and then write the radial function R ( r )  in the form 

R = r'+l exp( - p r )  A(  n)r". (15) 

a A ( N + l ) =  b A ( N ) + c A ( N - l ) + V ( n ) A ( N - n - 1 )  (16) 

a =&(Pi+ l ) (N+21+2)  (17) 
6 = P ( N +  I +  1)  - Z  (18) 

C = - ( E + f p * ) .  (19) 

The resulting recurrence relation for the A ( n )  is then 

where 

By differentiating (16) with respect to E or Z or any other parameter we can construct 
a theory analogous to that derived for the perturbed oscillator in 0 3. For the case 
R +CO it is not necessary to form any series sums; the A(  N) and other coefficients are 
used directly in forming the various required ratios. 

In a discussion of the hydrogen atom Zeeman effect, Killingbeck (1981) showed 
that at low field strengths it is possible to represent the effect of a perturbing term 
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$ y 2 ( x 2  + y 2 )  in the hydrogenic Hamiltonian by an  effective potential Ay’r’. The factor 
A is state-dependent and  follows from perturbation theory and angular momentum 
theory. The new method of the present paper obviously makes it easy to calculate 
results using the effective potential. Silva and Canuto (1984) have recently used a 
factorised wavefunction method for this problem. Table 2 shows some typical results 
obtained by the new method. The virial theorem was used to check the computed 
numbers. Perturbation theory indicates that the ( r “ )  values obtained using the effective 
potential will be very close to those for the true potential, and  they can be used to 
calculate the small second-order correction to the energy eigenvalue which is caused 
by changing from the effective potential to the true potential (Killingbeck 1981, 1983). 
What the present new technique does is to allow speedier calculations using the effective 
potential approximation. The effective potential takes care of state mixing which is 
diagonal in 1 and table 3 shows clearly how this dominant contribution varies with m. 
The values of the product ( r ) (  r - I )  also show that the wavefunction’s radial distortion 
is not a simple scaling. 

Table 2. Some results for the effective potential --I-’ + Ay2r2  at y = 0.1. (The linear Zeeman 
term fyl, is omitted.) 

h, 1 -0.497 521 65 1.489 1892 1.004 8729 Is 
2s ih 1 -0.095 653 02 5.184 6442 0.294 566 76 

& , I  -0.1 1 1  752 5 1  4.516 3106 0.271 520 61 
2P- I h. 1 -0.100 522 03 4.256 2638 0.285 681 79 
3d-, A> 2 -0.004 308 92 6.961 2074 0.161 284 53 
3d-, &, 2 0.013425 I I  6.498 8556 0.172 19265 

2PO 

Table 3. Perturbed oscillator results obtained by the finite difference method, with L = 6. 
The ( I ,  0)  results agree with the analytic ones for the harmonic oscillator. 

1 , O  0.242 1279 0.207 5538 0.010 3335 
0, 1 0.204 8996 0. I82 7323 0.000 8049 
1 ,  1 0. I82 6673 0.1492132 0.000 32 15 
130 0.5 1 5  7443 0.415 1075 0.082 6678 
0, 1 0.415 5184 0.495 8498 0.005 9583 
I , ]  0.389 2709 0.474 7630 0.002 98 12 

5. A finite difference method 

The methods of the preceding sections work well for polynomial potentials and they 
are applicable in principle to any potential with a convergent power series expansion. 
They could also be applied to potentials such as x’( 1 + g x 2 ) - ’  by incorporating a factor 
( 1  + g x 2 )  in the ansatz ( 5 )  for ll,, as Heading (1982) did in a tridiagonal matrix formalism 
for such potentials. For more general potentials a finite difference approach can be 
used. Starting from the Schrodinger equation 

-D2$+  vll, = Ell, (20) 
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and using the lowest-order finite difference representation of D2$ we quickly obtain 
the recurrence relation 

$ ( x + h )  = [ 2 + F ( . x ) ] $ ( x ) - $ ( x -  h )  ( 2 1 )  

F ( x )  = h 2 [  V ( x )  - E ] .  (22) 

where 

To use equation (21) we assign $(O) and $ ( h )  to suit the boundary condition at x = 0 
and calculate 4 ( 2 h )  and so on using some trial E value. If the outer boundary is at 
x = L then E is varied to give $ ( L ,  E )  = 0. Using ( 2 1 )  in this way gives eigenvalues 
which differ from the correct eigenvalues of ( 2 0 )  by a leading term of order h 2 .  
Killingbeck (1979) used perturbation theory to show that the modified equation 

$ ( x + h )  = ( 2 + F + $ F 2 ) 4 ( x , - 4 ( x - h )  ( 2 3 )  

will give eigenvalue errors of order h4 if V ( x )  is smooth. The use of Killingbeck's 
correction term is particularly well suited to the methods of this paper, since it gives 
a procedure which is computationally more simple than that associated with the 
Numerov method. $ in ( 2 3 )  plays the same role as A in (6) and it is clear that the 
values of d + / d E  will obey the recurrence relation 

B ( x +  h )  = ( 2 +  F + & F 2 ) B ( x )  - B ( x  - h )  - h 2 G ( x ) $ ( x )  (24) 

with 

G ( x )  = I + $ ( x )  ( 2 5 )  

(and with the x dependence of F in ( 2 3 )  and ( 2 4 )  being understood). To find the 
expectation value of some function U ( x )  we need to have the recurrence relation 
analogous to that for the C ( N )  coefficients in § 3 .  By adding a 'dummy term' p U ( x )  
to the potential and differentiating ( 2 3 )  with respect to p (at p =0)  we obtain the 
required relation: 

C ( x +  h ) = ( 2 + F + & F 2 ) C ( x )  - C ( x - h ) + h * G ( x ) U ( ~ ) ~ , ! / ( x ) .  ( 2 6 )  

To use the preceding equations in the spirit of § 3 the procedure is as follows, for the 
specimen case G(0) = $ ( L )  = 0. The quantities $(O), B(O), C(O), B ( h )  and C ( h )  are 
set equal to zero and $( h )  is set equal to 1 (or  any constant value which avoids overflow 
problems in the computation). Some initial E is used and the corrected energy E '  
and the estimated ( U )  are calculated from 

The calculation can be made automatic, with the runs being repeated until the energy 
and ( U )  value have converged. The results refer to the state with energy nearest to 
the starting E, if the shift E '  - E is suitably attenuated (Killingbeck 1984a). By counting 
the sign changes in 4 it is possible to see which excited state has been located. To 
apply the Neumann condition d$/dx  = 0 at x = L we can use the test that $( L+ h )  - 
I/J( L - h )  rather than +( L )  should be zero. 

The results for E and ( U )  as obtained using two or  more h values can be treated 
by Richardson extrapolation to give accurate results for the differential equation ( 2 0 )  
(Killingbeck 1983). The use of Richardson extrapolation makes the finite difference 
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method slower than the power series method, but we have checked that the results of 
the two methods agree for a variety of problems in which both are applicable. Table 
3 shows several expectation values for the perturbed oscillator problem which can be 
found by the finite difference approach but not by the power series approach. (To 
simulate an even parity state calculation the basic result $ ( h )  = $ ( - h )  is used to deduce 
the initial values of the various quantities.) The local quantities $’(y) for x = y were 
obtained by taking U ( x )  in the following form (as expressed in BASIC) 

O . ~ * ( X  > y - + h ) * ( x  < y + i h ) /  h 

to simulate a ‘half-delta function’ at x = y. For a radial problem, where all of the space 
(not half of i t)  is being integrated over, the factor 0.5 in (29) is replaced by I .  The 
expression (29), although not acceptable in traditional algebra, is evaluated as a Boolean 
function by most microcomputers. This is one reason why, apart from their simplicity, 
the methods of the present work are particularly suited to the capabilities of modern 
microcomputers. A Boolean function of the form ( $ ( x ) / $ ( x -  h )  <0)  can be used to 
add one to the node count whenever 4 changes sign (Killingbeck 1984a). 

6. The choice of convergence factors 

Table 1 shows some results for the potential x 4  (i.e. p = 0, A = 1).  These results were 
obtained speedily by the method of § 3, even though the correct asymptotic form of 
the wavefunction as given by analysis and by numerical calculation has a dominant 
factor exp(-)xI3/3) (Killingbeck 1984a). The use of a simple Gaussian convergence 
factor for one-dimensional problems and of a scaled hydrogenic factor for radial 
problems has been found to give good convergence and accuracy in a variety of 
calculations, with the choice of p not being very critical. The use of the simple standard 
convergence factors leads to near-universal algorithms and programs, whereas use of 
the formally ‘correct’ factors gives more complicated recurrence relations which vary 
more markedly from case to case. Further, for a method such as ours, which can use 
boundaries at any finite distance, the use of a mathematically exact asymptotic factor 
seems to be of little relevance. 

We wish to point out an interesting difference between the methods of 9 0  3 and 5 .  
If the method of § 5 is used to simulate an even parity one-dimensional calculation, 
the choice U ( x )  = x in equation (26 )  will yield (Ixl), since the integration runs from 0 
to m. However, the ‘full space’ ( x )  value is obviously zero and so would not be sought 
using the method of § 3. The equations of § 3 suppose all operators to be of even 
parity, so that the recurrence relations mention only coefficients attached to even 
powers of x.  To handle a one-dimensional ‘mixed parity’ potential such as p x 3  + Ax4 
would require the method of 0 5 ,  with the boundary conditions $ ( O )  = 4 ( 2 L )  = 0 and 
the displaced potential p (  x - L ) 3  + A ( x  - L)4. 

7. Conclusion 

In the last few years the use of microcomputers has made it possible to pass on to a 
new stage in the study of traditional model systems such as perturbed oscillators or 
perturbed hydrogen atoms. In the area of perturbation theory many previously inacces- 
sible perturbation series can now be calculated automatically, so that attention can be 
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concentrated on the interpretation and use of the series. In the area of direct numerical 
computation the methods described in this paper should make it easier to pass on to 
problems such as: how do energies and other quantities vary as boundary positions, 
boundary conditions and the shape of the potential V ( x )  vary? It might also be 
possible to produce a numerical method to calculate the energy perturbation series 
for an arbitrary perturbation p U ( x ) ;  the El term is just ( U )  and E2 can be obtained 
as i d (  U ) / d p .  The simple equations of § 2 and the procedures used in the later sections 
are probably capable of much further development, but the illustrative results presented 
here establish clearly the promise of these methods for a variety of calculations. 
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